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Pressure Tensor and Viscosity Coefficients 
of a Soft Sphere Liquid Under Shear 
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General properties and consequences of the distortion of the structure of a 
simple liquid subjected to a planar shear flow are reported. In particular, the 
orientational distribution of particles in the first coordination shell around a 
given particle is analyzed, and the effect of this distribution on the pressure 
tensor is discussed. The distorted distribution gives rise to a set of non- 
Newtonian viscosity coefficients reflecting the occurrence of normal pressure 
differences in the liquid. Numerical values of these viscosities are given for a soft 
sphere fluid at 7/8 of the freezing density using the technique of nonequilibrium 
molecular dynamics. A wide range of shear rates is considered and all viscosity 
coefficients are found to be functions of the shear rate. 

KEY WORDS: nonequilibrium molecular dynamics; non-Newtonian effects; 
radial distribution function; rheological behavior; viscosity. 

1. I N T R O D U C T I O N  

The structure of a liquid, as characterized by the radial dis t r ibut ion 

funct ion,  is distorted out  of equil ibrium. In  fact, the very existence of a 

potent ia l  cont r ibu t ion  to the t ranspor t  coefficients is evidence of the 
distort ion since the coefficients can be expressed as weighted integrals over 

the difference between the pair  correlat ion funct ion  in nonequ i l ib r ium and  
its equivalent  equi l ibr ium value [1-3]. But this is a macroscopic a rgument  

and  unti l  recently was essentially only formal. The si tuation has changed 
with the in t roduc t ion  and  exploitat ion of nonequ i l ib r ium molecular  dynam-  
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ics [4-9]: computer experiments made it possible to study the basic phe- 
nomena occurring in a nonequilibrium process, to test kinetic theory on the 
microscopic molecular level, and hence to give direct insight into the 
distorted microscopic structure of a fluid. This last feature is the purpose of 
this article. We wish to discuss some general properties of the pair correla- 
tion function and of the first coordination shell (nearest neighbors) for a 
liquid subjected to a shear and to present specific results obtained from a 
computer simulationl Further, some consequences of the distortion of the 
structure to the pressure tensor are pointed out and corresponding non- 
Newtonian features of the model fluid are reported. The work follows 
earlier studies of Hess [10], Hess and Hanley [11], and Evans [12], who 
emphasized the essential non-Newtonian Characteristics of even very simple 
spherical fluids. In particular, preliminary studies of the distortion of a soft 
sphere fluid were reported in ref. [11], and this paper is a more detailed and 
systematic extension. 

This article is organized as follows. First, the pair correlation function, 
g(r), which depends both on the interparticle distance r = ]r I and direction 
specified by the unit vector P = rr-1 in nonequilibrium, is expanded with 
respect to tensors constructed from the Cartesian components of r. The 
expansion coefficients, themselves tensors, are functions of r. The scalar 
and second rank terms are of particular interest, and we will analyze a fluid 
undergoing planar Couette flow: in this case, three of the five tensorial 
components suffice to characterize the anisotropy of the radial distribution 
function. We present results graphically for the functions [and for the 
scalar, spherical symmetric, part of g(r)] based on a simulation of a soft 
sphere inverse-12 fluid at a state point about 15% less than the freezing 
density. These results follow and extend our earlier results [11] by illustrat- 
ing how the functions vary with the imposed shear or strain rate. 

Second, the orientational distribution of particles in the first coordina- 
tion shell is discussed in some detail. This distribution follows by appropri- 
ate integration of the radial distribution function over r. In equilibrium, the 
distribution is, of course, isotropic, i.e., the nearest neighbors of a central 
reference particle are found with equal probabilities in all directions. But in 
nonequilibrium this is not so. Given numerical values of the expansion 
coefficients of g(r), we display distortion patterns as polar-diagram plots. 

Third, some consequences of the shear induced distorted structure are 
indicated, and a set of viscosity coefficients (of which the shear viscosity 
coefficient is one) is introduced to characterize the rheological behavior of 
the liquid. The interrelation between the shear induced distortion, non- 
Newtonian viscosity and the occurrence of normal pressure differences is 
pointed out. 
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2. EXPANSION OF THE RADIAL DISTRIBUTION FUNCTION 

We consider a simple liquid of spherical particles which can be 
subjected to a shear [13]. The pair correlation function g = g(r) is a 
measure of the probability of finding any second particle at position r when 
one given particle is at r -  0. At thermal equilibrium, g is the radial 
distribution function geq(r), which depends on the distance r but not on the 
direction of the vector r (which can be specified by the unit vector 8); 
however, in nonequilibrium g becomes a function of r and of ~ or, 
equivalently of r, 0, and ~, where 0 and ~ are the polar angles associated 
with r. This directional dependence can be accounted for explicitly by 
expanding g(r) with respect to spherical harmonics [12], ytm(O,e?), or, 
alternatively, with respect to Cartesian irreducible tensors constructed from 
the components of the unit vector P. If the particles are identical, r and - r  
are equivalent so only tensors of even rank occur in the expansion. 

The expansion for g can be written as 

A A 
g(r) = gsc(r) + g ~ ( r ) r ~  * rv . �9 �9 (1) 

The quantity g~c(r) is the scalar or isotropic contribution to g(r). The 
second term is of critical importance for the viscosity of the system; it is 
written in Cartesian component notation with the summation convention. 
The asterisk indicates the symmetric traceless part of a tensor, for example, 
for vectors a and h, 

a t * b  e = � 8 9  1 b (2) 

where 8,v is the unit tensor. 
One can interpret the coefficients of the expansion (1) as orientational 

averages, specifically, 

g Xr)= f g(r)a r 

- -  r~g(r) d r 
15 = p , A  2A 

(3) 

The quantities depend in general on r and on the strength of the externally 
imposed disturbance, in our case the shear rate. We note than an expansion 
of the form of Eq. (1) has been used to treat nonequilibrium phenomena in 
colloidal solutions, molecular liquids, and liquid crystals, but has only very 
recently been applied to simple liquids [14-17]. 
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2.1. Special Geometry: Planar Couette Flow 

Consider planar Couette flow with the flow velocity u parallel to the x 
axis and the gradient paralM to t hey  axis. The shear rate r = du~ /dy ,  and 
the shear rate tensor is 

or, in our notation, 

3 '= 0 
0 

(4) 

= re2 �9 e f  (5) 

with a corresponding vorticity ~, 

1 % = ~ %xV~vx (6) 

In general, the tensor g~ has five independent components, but only three 
exist for the special geometry here: 

g~, = g+ e ;  * e f  + g _  �89  x - eY~ef) + goe[, * e;  (7) 

where gk(r),  k - - + , - , 0 ,  are scalar coefficients. In terms of spherical 
components of the tensor g, g(m), the coefficients g+ and g_ are the real 
and imaginary parts of g(-+2) in the corresponding spherical harmonic 
representation: go corresponds to g(0) where the direction of the vorticity is 
chosen as a reference axis (the z axis here). The m = _  1 terms, and 
consequently terms associated with e ;  * e; and e I * e~, vanish for this 
special geometry. This follows from the fact that these terms, in contradis- 
tinction to those included in Eq. (7), are not invariant under the symmetry 
operation x, y ,  z ~ - x ,  - y ,  z which leaves the gradient of the flow velocity 
field invariant. 

On inserting Eq. (7) into Eq. (1) one obtains 

g(r)  = gs~ + g + ~ )  + g_  ( �89 )( 22 - ~2) + go( ~2 - �89 ) + . . -  (8) 

where 2 = r - l r x ,  0 = r - l ry ,  and z = r-1G are the components of vector r 
parallel to the x, y and z coordinate axes, respectively, 

Due to Eq. (7), the second relation in Eq. (3) is equivalent to 

1-5 gk = Ykg ( r )d2r  k -  + , - , 0  (9) 
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where 

Y+ 2s y 22 "~2 = : - - y  , Y o ~ - 3 ( e  2 - 1 )  

Thus the coefficients & are essentially orientational averages of linear 
combinations of the spherical harmonics Y2m with m = + 2, 0. 

Equation (8) is the basic relation for this and our other studies [11]. It 
is formally an extension of the traditional ansatz for the pair correlation 
function for a system under shear [1-3] which truncates the series at g + .  A 
truncation assumes that g+ is linear in the shear rate y, that g_ and go are 
of higher order in y and thus effectively vanish, and that the scalar part g~c 
is independent of y. The main purpose, however, of our work here and in 
previous publications is to demonstrate and to try to interpret that g+ 
seems to be nonlinear in y, that g_ and go should not be considered 
negligibly small, and that gsc deviates from the equilibrium radial distribu- 
tion function. As has been pointed out [11, 12], the first effect gives rise to a 
non-Newtonian viscosity, the second to the existence of normal pressure 
differences [that is, Pxx :/: Pyy ~ Pzz, where these are the diagonal compo- 
nents of the pressure tensor], and the third has interesting thermodynamic 
consequences since gsc can be related to a hydrostatic pressure. 

3. COMPUTER PROCEDURE 

The technique used here is a variant of shear nonequilibrium molecu- 
lar dynamics. In this technique, the model system with particles interacting 
with a designated intermolecular potential, ~, is set up for a conventional 
equilibrium molecular dynamics calculation at constant density 0 = N~ V, 
where N is the number of particles and V is the volume, with periodic 
boundaries: the equations of motion are solved numerically, in our case 
with a Gear fifth-order predictor correlator technique, for a sufficient 
number of time steps to verify conservation of energy and to adjust if 
necessary the time step increment to achieve this. The system at equilibrium 
is monitored further in a pseudo canonical ensemble by fixing the kinetic 
temperature to a preassigned value via velocity scaling. The shear rate, ~,, is 
then introduced by adjusting the periodic boundary conditions in the x-y 
plane as follows: should a particle leave the primary cell by crossing the x 
o r v  face at a particular time step At, the returned image is repositioned by 
an increment ~yLAt ,  where L = V 1/3. A least squares adjustment is then 
made to the velocities of all particles in the cell to ensure that the velocity 
profile is linear to within a statistical uncertainty and that the shear rate 
tensor matches to within statistical uncertainty the input value. Viscous 
heat is removed by controlling the kinetic temperature. 
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The procedure is pragmatic and there are questions on the fundamen- 
tals and on the mechanics of solving the equation in nonequilibrium, 
introducing the shear and scaling the temperature. Nevertheless the results 
of the technique have received considerable circumstantial support. Vari- 
ants of the method give consistent answers [4, 8] and, especially, Evans [17] 
has developed two independent nonequilibrium molecular dynamics algo- 
rithms which give results that agree with corresponding results from our 
technique to within statistical error. Shear viscosities in the limit of zero 
shear for both the Lennard-Jones [18] and the hard sphere [9] systems have 
been estimated and compared with the equivalent direct molecular dynam- 
ics G r e e n - K u b o  calculation, and the comparisons are satisfactory. Further, 
Evans and Hanley [19, 20] have proposed a heuristic thermodynamics to 
describe the properties of a system under shear and have introduced 
consistency checks and criteria which can be verified. 

The system under investigation here was a model fluid of 108 spherical 
particles interacting with the inverse-12 soft 
r = 2.5: 

r = d / r  '2 r < 2.5 

~ = 0  r > 2 . 5  

sphere potential truncated at 

(lO) 

where d is the potential parameter  which can be written in terms of the 
usual energy and length parameters, d - - c o  12. Soft sphere systems are 
conveniently studied at a state point X, where 

X --~ p / ( ~ -  T 1/4) (11) 

with T, which is not independent, set at 0.25 so that X =-- p. All variables 
can be expressed in terms of d or in terms of ~ or o, but we set d equal to 
one, as usual, and the mass of a particle, m, equal to one. For convenience, 
Table I lists the conversion of our variables to "real" variables. 

Variable 

Table I. Some Variables Used in the Computer Simulation a 

Simulation 
variable Real 

Length r* r = r*(d/kT) 1/Iz 
Time At* At = At*(d/kT)l/12(m/kT) j/2 
Velocity v* v = v*(kT/m) I/2 
Shear rate 7* -f = ~,*(d/kT)- l/lZ(kT/m) 1/2 
Viscosity */* ~ = "o*ml/2(kT)2/3/d I/6 
Pressure p* p = p*(kT)/(d/kT)-1/4 

i 
"Denoted (in this table only) with an asterisk, in terms of the potential parameter d of 

Eq. (lO). 
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Previous results [21] indicated that the effect of shear on the properties 
of a system depends strongly on the density: the greater the density, the 
larger the effects. For this reason the calculations reported in ref. [1 l] were 
carried out at a density of 0.8 known to be very close to the freezing 
density. The interpretation of the results, however, was somewhat clouded 
by the very interesting phenomenon of shear induced melting [191. Hence 
we chose a value of X =  0.7 for this study to bypass this difficulty. 

3.1. C o m p u t e r  Output  

The key output from the simulations were as follows: the kinetic 
temperature, T, 

r = ~ . [vi - u(ri)] 2 (12) 

where v i is the velocity of particle i and u the streaming velocity at position 
ri; the energy per particle, E, 

where ~,y ~ ~(Ry) with R~ = Iri - rjl; the elements of the shear rate tensor, 
Eqs. (4) and (5); and the elements of the pressure tensor P, 

P = ~ . [vi  - u(ri) ] Iv i - u(r / ) ]  + R,). (14)  

The expansion coefficients of Eq. (8) are also evaluated by histograms: 

Fgsc = ~(N> 

Fg+ = 2(2)~) 
(15) 

Fg_ = (2  2 - 2 2) 

Fgo = < - i> 

where F =  (8/15)vr2Arp. The angle brackets denote an average for the 
quantity between r and r + Ar, a distance r from a given central particle 
averaged over all particles. 

Runs of 50,000-75,000 time steps were made for shear rates in the 
range 0.05 < 7 < 1.0. The results are listed in Table II and will be discussed 
in more detail in Section 5. One notices that the calculated values of the 



Table II. Results of the Simulation of the Soft Sphere System at X = 0.7 with 
T = 0.25 ~ 

Shear rate 

Designated Calc Temperature p T - 2/3r/+ T - 2/3r/_ T - 2/3~/0 

0.05 0.0518 0.2507 2.381 2.345 [2.319] - 0.07 [-0.06]  - 0.13 [ - .09]  
0.08 0.0810 0.2493 2.380 2.153 [2.146] 0.06 [ - 0 ]  0.02 [ - 0 ]  
0.09 0.0904 0.2487 2.383 2.272 [2.243] 0.1t [0.081 0.01 [ - 0 ]  
0.10 0.0984 0.2506 2.379 2.351 [2.302] 0.14 [0.11] 0.08 [0.08] 
0.12 0.1148 0.2498 2.388 2.303 [2.282] 0.03 [0.04] 0.04 [0.02] 
0.13 0.1294 0.2508 2.393 2.132 [2.107] 0 [0.02] 0.08 [0.07] 
0.14 0.1398 0.2495 2.390 2.195 [2.137] 0.18 [0.18] 0.11 [0.10] 
0.15 0.1540 0.2510 2.390 2.098 [2.064] 0.17 [0.16] 0.14 [0.12] 
0.168 0.166 0.2499 2.396 2.289 b 0.02 b 0.10 b 
0.20 0.1966 0.2501 2.400 2.188 [2.116] 0.12 [0.10] 0.10 [0.10] 
0.3025 0.3040 0.2498 2.4287 2.074 [2.020] 0.09 [0. t0] 0.12 [0. I0] 
0.44 0.4344 0.2505 2.4787 2.013 [1.961] 0.04 [0.05] 0.13 [0.11] 
0.50 0.5018 0.2526 2.499 1.954 b 0.06 b 0.16 h 
0.7225 0.7246 0.2525 2.578 1.772 b 0.05 b 0.16 b 
1.0 0.9990 0.2552 2.710 1.631 [1.581] 0.03 [0.04] 0.19 [0.16] 
0 0 0.2501 2.375 

a p is the pressure [�89 tr P] and 7//, (k = + ,  - ,  0) are transport coefficients calculated from Eq. 
(31). Values in brackets were obtained from the alternate Eq. (29). The last entry is for an 
equilibrium run in the pseudo-canonical ensemble. We have multiplied the transport coeffi- 
cients by T -2/3 (Table I) so the presentation is consistent with our previous work [4, 21]. 

Integration values unobtainable. 

3 . 0 -  

2.0 

g (r) 

1 . 0 -  

7" =1.0 ~ 

0 4  

"-.7= 0 

0 I I 
0 1.0 2.0 3.0 

R 

Fig. 1. Plot of the equilibrium radial distribution function (solid curve) compared to the scalar 
coefficients gso(r) of Eq. (1) from results for two values of the shear rate, 7 = 0.4 and 1.0. 
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shear rate are close to the input values, as they should be: similarly the 
scaled temperature is within 0.5% of the fixed mean value of 0.25 unless the 
shear rate is high. In this latter case, however, the signal to noise ratio is 
also high. The histograms of Eq. (15) were constructed for each run giving 
estimates of the coefficients gsc and gk. Values for sample shear rates are 
displayed in Figs. 1 and 2. There are several points here. First, with respect 
to Fig. 1, the minima and maxima of g~c are less pronounced under shear, 
as compared with the equilibrium value. Furthermore, there is a shift of the 
first maximum towards smaller distances. This compression is responsible 
for the shear enhancement of the (scalar) hydrostatic pressure. Clearly the 
primarily induced anisotropy described by g+ is the largest of the second 

0.8 

0.8 

g+ g go o,,p o,o I 
A.  ~1, I ~" = 0.09 

0.16l 0 . 1 6 ~ -  

0,6 

0.8 

0.16 

31o 

0.16 

0.16 

0.16 

7=0.14 

- ~ , ~  310 

1.6 

1.6 

31o 

0.4 

0.4 

3!o 

0.4 

y =  0,44 

V ~ 3.0 

0.4 

4.0 

4.0 
V v 31o 

0.8 

3.0 

0.8 

o8 i 
[ 

0.8l 

X =. 1.0 

l k . /  3'.o 

Fig. 2. Plots of the coefficients g + ,  g_ , and go of Eq. (9) for four values of the shear rate 
y = 0.09, 0.14, 0.4, and 1.0. 
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rank tensorial coefficients; the g_ and go, however, are definitely nonzero 
and, as is qualitatively apparent, depend on 7 in a nonlinear way. Further- 
more, it is interesting that go, which is comparable in size with g_ for the 
smaller shear rates, becomes considerably larger than g_ at higher shear 
rates. The large go for 7 -- 1 is indicative of a kind of uniaxial ordering of 
the directional correlation between two particles with the symmetry axis 
parallel to the vorticity (z direction). 

4. ORIENTATIONAL DISTRIBUTION OF THE FIRST 
COORDINATION SHELL 

The number of particles found in a sphere of radius R within a solid 
angle around P is 

j!/(p, R ) = pro R g(r)r  2 dr (16) 

where fg(r)d3r = V and p = N/V .  If we insert the expansion Eq. (1) into 
Eq. (16), we have 

JU(P, R)  = n(R)+r~*r~o g~r d r + . . .  (17) 

where n(R)= 4~rof~gscr2dr. We note that there is an implicit dependence 
on the shear rate for J which enters via the values for g. Using the 
symmetry adapted ansatz (7) for g~, leads to 

1 + n o ( R ) ( z 2 - - ~ ) + . ' .  ] (18) 

where 

fO R n~(R) = 4~rp gk(r)r2dr k = 0, + ,  - (19) 

Again, n(R) and nk(R ) will be shear-rate dependent and, further, the sign 
of nk(R ) will depend on the integration limits for g~: nk(R) can be either 
positive or negative as one can see by inspection of Fig. 2. 
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As in previous work [11], it is often convenient  to write Eq. (20) in 
terms of polar angles of the unit vector ?: 

47rJU = n + �89 sin 2q~ + n_ cos2q,] + no(COS20 - I )  (20) 

Equat ion (20) thus describes the orientation distribution of particles a round  
a reference particle. Here  we consider the distribution within the first 
coordinat ion shell, which one can define as the shell whose radius corre- 
sponds to the first min imum in gsc(r), i.e., R ~ 1.5. 

Equat ion (20) can be expressed for any set of 0 and ~ of interest. For  
example, for the plane of the shear, the x -y  plane for which 0 = ~r/2, the 
equat ion becomes 

4~rJU = n - in3 0 + �89 sin2~ + n_ cos2,#) (21) 

Given, therefore values of gsr and gk we can construct  a polar  plot  for the 
variation of JUwi th  ~. As an example, Fig. 3 shows the result for the fluid 
subjected to a shear of one. 

If  7 was zero, the plot would be, of course, a circle of radius n with the 
distance from the center to the curve in a specific direction a measure of 

Y 
2.0[ 

p --0.7 

+ y =1.0 

1.0 
I 

1.0 

2.0 

Fig. 3. Plot of the distribution 4~rJU of Eq. (21) for the x-y plane (the plane of the shear) for 
the fluid subjected to a shear of 1.0. We have subtracted 5.0 from the numerical value of 4~JK 
to emphasize the distortion pattern. The principal axis is at ~47~ the 45~ ~ axes are 
drawn for reference. 
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the probability of finding a nearest neighbor in that direction. In the lowest 
order in the shear rate for which n+ ~ ,  and n 0 ~  n ~_.0, one would have 
an ellipse (provided n+ << n) with principal axes in the ~r/4, and 3vr/4 
directions with respect to the x axis. As remarked in the introduction, such 
a distortion always occurs when a fluid is subjected to a shear and, in fact, 
the coefficient n+ is related to the shear viscosity coefficient. If  n_ =~ 0, the 
ellipse will be rotated, and the highest probabilities for nearest neighbors 
will be found at the angles 

~max = ~ / 4  - X ; 5 ~ / 4  - X (22) 

where 

tan 2X = n = / n  + (23) 

[A nonzero n o will affect the reference (n - �89 no) only.] 

Distortion in the x - z  or y - z  planes can also be illustrated. In this case 
Eq. (20) reduces to 

4~JU = n + �89 sin20 + n0(cos20 - �89 (24) 

(with the plus sign for the x - z  expression). The expression is simple to 
interpret: if n_ and n o are zero, a polar plot will be circular even if 7 v a 0. 
Hence any deviation from a circle indicates a nonzero n or n 0. The curves 
for the y - z  plane have been drawn as Fig. 4 and such deviations are 
obvious. 

T p "= 0 . 7  

~ 1 .0  

I '.~ 
Fig. 4. Plot of the distribution 47rJU of Eq. (24) for t hey  - z plane for the fluid under a shear 

of 1.0. As in Fig. 3, we plot 4~rJU less 5.0. Note the elliptical shape. 
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We should also remark that the plots are functions of the integration 
limit R. One could choose a value of R so that the n~ are negative or even 
zero and the distortion patterns would reflect this. We refer to refs. 11 and 
22 for a series of detailed plots. 

The distortion curves can be regarded as an instructive interpretation 
of the basic result that the expansion coefficients g~c and ge are ~,- 
dependent. On a macroscopic level, these properties are reflected in the 
pressure tensor and in a rather complex rheological behavior; as will be 
shown next, the nonlinearity of the distortion of the radial distribution 
function entails a shear rate dependent viscosity and normal pressure 
differences. 

5. T H E  P R E S S U R E  T E N S O R  

One can write the pressure tensor Pu, as the sum of an isotropic scalar 
part  psi,  and a symmetric irreducible traceless part  p~,, viz., 

P.. = pS.. + fir. (25) 

where, in terms of the function g, 

1 2 { ' t3  0~ ? = - g p  j a  rgr-~r 

1 2 : - 3  r p,.. = - -~p j a  rg ,O.~ 

(26) 

If the expansion (1) is inserted into Eq. (26) and the integrations over the 
angles of the unit vector ? performed, we find 

2 fo  r,gsc ,, dr p = - ~-rrp 2 

.-. 4 f m  3 . 
= - - -  Jo r g ~ . ~ d r  P'" 15 ~ 

(27) 

where the relation t'~ * 3, = P, * P,r(de~/dr) has been used. We next insert 
the form of g~, as given by Eq. (7) to obtain 

= x x x _  , e + z ( 2 8 )  p~. p + 2 e ~ * e { + p _ ( G e ,  e{, G )  po2%*e~ 

where the coefficients Pk are 

P k  = - -  1~-5 t}2 r r)(/ dr k = + , - , 0  (29) 
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and are related to the Cartesian components of the pressure tensor by 

P+ =Px,; P - =  l (Pxx -P , y ) ;  p o = � 8 9  �89 +P,y)] (30) 

Equation (30) allows viscosity coefficients to be introduced by 

Pk = - ~/k~' k = + , - , 0  (31) 

where ~, = aUx/3y as before; ~/+ is the shear viscosity and in general 
depends on 3'; and ~/_ and 7/0 are associated with normal pressure differ- 
ences (i.e., thatpx x =/= pyy v ~ Pzz) and they too depend on ~,. 

As an aside we remark that the coefficients ~/_ and ~o are identified 
with the viscometric function ~Pl and @2 defined, for example, in ref. 23: 

Pyy - Pzz = - +2~ '2 (32) 

Hence 

~1~/ -'~- 27~_ ; ~2~/ = - - (2% + T/_) (33) 

We prefer to consider the set ~/+, r /_ ,  and 70 rather than the perhaps 
more familiar set ~/+, ~Pl, and @2 for two reasons. First, the ~k are related to 
the spherical components of ~(m) of the viscosity tensor (with the direction 
of the vorticity, the z axis, as the reference axis) in a simple manner  [24]: 

+ and 7 -  are essentially the real and imaginary parts, respectively, of 
7(_+2), while % corresponds to m = 0. Second, a theoretical analysis shows 
[10] that different theoretical mechanisms lead to ~_ 4= 0 and ~/0 4= 0: more 
specifically, the rotation induced by the vorticity & of the flow field gives 
rise to 7/_ 4= 0, and T0 v a 0 is generated by terms of even power in the 
symmetric traceless shear rate tensor ~,~,. 

A fourth viscosity coefficient, ~/', could also be introduced because not 
only are P:,x va Pyy va Pzz in general for a fluid under shear, hut the average, 
expressed as �89 of the trace of P, is not the same as the equilibrium 

hydrostatic pressure,/Veq. We see this, for example in Fig. 1 since g(equil) 
4= gsc; see Eq. (24). Hence 

Peq - P = - ~7'V (34) 

5.1. Results from the Simulation 

Table I gives values for p, ~ + ,  ~/ , and ~o for the soft sphere system. 
Given are values estimated directly from the elements of the pressure tensor 
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via Eq. (14) and, for T+, T-,  and To, valueS obtained by integration of Eq. 
(29) to r = 2.5 using the results for the expansion coefficients via the 
histograms of Eq. (15). It should be recalled that the expressions of Eq. (29) 
are for the potential contribution only, whereas the results from the 
pressure tensor contain a kinetic contribution. We would, therefore, expect 
the results from Eq. (29) to be lower, as is the case. We do not know, 
however, the density dependence of T+,-,o (kinetic) (for their shear rate 
dependence, see ref. 25); such a dependence nevertheless is expected to be 
very small. 

Comments are as follows. First, we have reported a quantitative 
estimation from microscopic arguments of the normal pressure difference 
coefficients T- and T0 for a wide range of shear rates. Second, since T and 
T0 are generally positive except at low shear where, presumably, they are 
effectively zero, tensor element pyy > Pxx and (Pxx + pyy)/2 > Pzz. (It should 
be pointed out that whereas T+ must be positive, T- and To can, in 
principle, be positive or negative.) Curves for T- and T0 are plotted in Fig. 
7. Qualitatively, the behavior of T- and T0 agrees with the theoretical 
calculations [10] based on the Kirkwood-Smoluchowski equation. Third, we 
plot @ versus y3/2, where @ = p ( ~ , ) - p  (y = 0), and T+ versus y 1/2 as 
Figs. 5 and 6. Similar y-dependences were found for the Lennard-Jones 
fluid, the m-6-8 fluid [26], and our preliminary results for soft spheres [21]. 
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Fig. 5. Variation of pressure (�89 tr P) with the shear rate. We have plotted In @ versus In ~,. 
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Fig. 6. Variation of the viscosity ~ + with the square root of the shear rate. 

Fourth, it can easily be shown from the integration of Eq. (29) to the first 
coordination shell gives a viscosity coefficient limit which is very close to 
the asymptotic or macroscopic value. In other words, the pressure tensor, 
and consequently the viscosity coefficients, reflect directly the distortion of 
the first coordination shell. 
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Fig. 7. Variation of the viscosity coefficients ~_ (lower curve) and 70 (upper curve) with shear 
rate. The size of the points is a reflection of the error of that result. 
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6. CONCLUSIONS 

We have discussed some general properties of the distortion of the 
structure of a simple liquid subjected to a plane shear flow. In particular we 
have looked at the pair correlation function: given this, one can study the 
distribution of particles around a central particle or, alternatively, examine 
the pressure tensor from a microscopic viewpoint. A set of viscosity 
coefficients 7 +,  7 - ,  and ~/0 (of which the shear viscosity 7 + is one element) 
can be defined to characterize the pressure tensor: T/_ and 70 can be 
identified with normal pressure differences, i.e., that Pxx =/= Pyy ~ Pzz. 

Earlier work [11] was extended, and we obtained results for a soft 
sphere liquid at 7 /8  of its freezing density using the technique of nonequi- 
librium molecular dynamics. The variation of the viscosity coefficients 7 -  
and T0 with shear rate has been presented but the results should be 
regarded as preliminary since we need more data for a range of densities 
and for other model systems before one can arrive at a quantitative 
conclusion on their behavior. The effect of system size should also be 
studied. The observation that (1) 7 -  and 70 can be nonzero and (2) that all 
coefficients 7 +,  7 - ,  and 7o are functions of the shear rate is interesting. It 
suggests a reassessment of the nature of nonlinear or "theological" behavior 
in fluids. Such behavior is traditionally associated only with fluids of 
complex structure. While some authors have argued this is not necessarily 
so, and that one should consider the shear dependent behavior of all fluids 
with respect to an appropriate time scale, the computer calculations give 
concrete evidence. In this context, the experiments of Clark and Ackerson 
should be mentioned [27]. These authors have investigated shear induced 
distortion using light scattering techniques in colloidal suspensions. The 
parallels with the computer simulations are very strong [28]. 

Along these lines a simple argument can be made to equate non- 
Newtonian behavior of simple and of nonsimple liquids. On the micro- 
scopic level, the basic mechanism associated with shear flow is a deforma- 
tion and a rotation of the orientational distribution of particles caused by 
the shear rate tensor and the vorticity, respectively. For nonspherical (stiff) 
particles and polymer (loose) molecules, the orientation of the axis of the 
molecules or of the links between polymer beads [29] is affected by the 
shear; whereas for simple liquids, the shear affects the direction of the 
vector joining neighboring particles. In this sense, therefore, nonlinear 
phenomena in simple liquids is to be expected. Conversely, one can argue 
that a detailed investigation of the shear rate dependence of the pressure 
tensor and viscosity coefficients of simple liquids could also provide new 
insight into the rheology of nonsimple liquids. 
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